
五年级上册数学教学设计
在教学工作者实际的教学活动中,常常需要准备教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么你有了解过教学设计吗?以下是小编为大家收集的五年级上册数学教学设计,仅供参考,大家一起来看看吧。
五年级上册数学教学设计1教学内容:
苏教国标版数学五年级上册第59~60页例1及相应的“试一试”、“练一练”、练习十第1-3题。
教学目标:
1、结合具体情境,让学生探索并发现简单周期现象中的排列规律,能根据规律确定某个序号所代表的是什么物体或图形。
2、使学生主动经历探索发现、合作交流的过程,体会画图、列举、计算等解决问题的不同策略,能根据实际情况,选择合适的解决问题的策略。
3、让学生在探索规律的过程中体会数学与日常生活的联系,获得运用所学
知识解决问题的成功体验,建立自信心。
教学重点:使学生探索发现简单周期现象中的排列规律(找规律),并能选择合适的策略解决这类问题。
教学难点:让学生会确定几个物体为一组,如何根据余数来确定某个序号所代表的是什么物体或图形。
教具准备:多媒体课件。作业纸附件。
教学过程:
课前播放《喜羊羊与灰太狼》主题曲《别看我只是一只羊》。会的学生跟着哼唱。轻松课前的气氛。
游戏导入,激发兴趣。
刚刚的歌曲熟悉吗?谁来说说看你最喜欢里面的哪一个卡通形象?(让学生说)老师最喜欢喜羊羊,因为它聪明又乖巧(课件出示喜羊羊图片)那请你猜一猜,下一个会出现谁?第三个呢?接着猜。第四呢?第五个呢?第六个呢?你是怎么猜出来的?你真聪明,其实在我们平时的生活中,像这样有规律的排列现象还有很多很多,今天我们这节课我们就来一起学习一下“找规律”。(板书课题)
设计意图:本节课从一开始就创设了一个轻松的氛围,从最近受学生欢迎的国产动画片《喜羊羊与灰太狼》入手,让学生在不知不觉中,在一个愉悦的氛围中进入了课堂,并且开始初步探索他们感兴趣的卡通形象的排列规律,很好的激发了学生的兴趣。
感知物体的有序排列,探究简单的周期规律
师:请你先闭上眼睛,老师带你去一个非常漂亮的地方(课件出示图片),看,这地方你们认识吗?对了,我们来到了喜羊羊他们生活的地方——青青草原。来到了这个地方,你有什么感受呢?
生:青青草原被装扮的好漂亮啊!
师:恩,的确,草原上盆花似锦,彩灯高挂,彩旗招展,好美呀。大家有没有发现,在这些美丽的图片上其实也蕴含着数学的许多奥妙。老师截取了其中的一小部分,放大,请大家仔细观察。
一.(出示教材例1主题图)师:我们一起看这一幅图,从图中你都看到了哪些物体?
生:盆花、彩灯、彩旗;
师:恩,你观察的真仔细。
师:那这些物体的摆放有规律吗?谁来说一下盆花的摆放有什么规律?
生:一盆蓝花,一盆红花。师:恩,你真聪明。也就是说几盆为一组呢?
生:两盆花为一组。
师:恩,你讲的真棒!那我们可以在图中这样表示出来。(教师电脑演示)
师:那彩灯、彩旗的摆放又有什么规律呢?你能照着样子在练习纸上圈一圈吗?(学生自己圈一下,体会每组有几盏彩灯?每组有几面彩旗?)
二、汇报结果。
师:那谁来说说看彩灯的摆放有什么规律?应该是几盏为一组?每组的几盏灯分别按怎么样的顺序排列的呢?
生:3盏灯为一组,每组的三盏灯分别是按红、紫、绿的顺序排列的。
师:那彩旗呢?谁来说?
生:每四面为一组,分别是红色、红色、黄色、黄色。
师;恩。说的非常棒。
师:其实啊,像这里的盆花、彩灯、彩旗它们都是每几个为一组,一组一组依次重复排列的。(板书:依次重复排列)
设计意图:这个环节选择了日常生活中较为常见的简单周期现象作为学生探索规律的素材,把生活中按规律摆放的盆花、彩灯、彩旗等场景与喜羊羊与灰太狼生活的草原结合起来,把学生能够把更多的注意力集中到这些不同物体排列规律的观察上来。其实要让学生说出各类物体的摆放顺序并不难,但关键是怎么样让学生用较为简洁的语言表达清楚。在设计此环节时,我注意了这么一点:特别是在交流时,应该在学生自由汇报的基础上,老师用规范的数学语言引导学生把观察到的规律用简洁、准确的语言清楚的表达出来。为下面的计算法解题策略作一个铺垫。
三、自主探究,体会多样的解题策略。
刚才同学们都观察得很仔细,说得也非常好,找到了他们排列的规律,也就找到了解决问题的金钥匙。
那首先我们来看盆花。(点击出示盆花小图)初步提问:在图中,我们能
看到几盆花?
提问:照这样摆下去,左起第15盆花是什么颜色?谁来猜一猜。(请几个
学生猜一猜)那你们是怎么想的呢?先把你的解决过程在练习纸上表示出来,然后同桌之间交流一下,比一比,你们的方法有什么不同?开始。
3.全班交流。
引导:谁愿意把你方法介绍给全班同学?
学生可能提出如下的想法。(适时板书:画图、推想、计算)
生1:画图的策略:o ● o ● o ● o ● o ● o ● o ● o(o表示蓝花,
●表示红花)第15盆是蓝花。
教师提问:你一共画了多少个“圆”?(15个,正好是蓝花。)
生2:推想的策略:左起,第l、3、5……盆都是蓝花,第2、4、6……盆都是红花。第15盆是蓝花。
教师提问:其他同学明白这种想法的意思吗?(引导学生说出位置是单数的都是蓝花,双数的`都是红花),像这种方法我们数学上把它叫做推想的方法。
生3:计算的策略:把每2盆花看作一组,15÷2=7(组)……1(盆),第15盆是蓝花。
学生说,师板书:15÷2=7(组)……1(盆)答:第15盆是蓝花。针对算式,教师提问:能说说2是从哪里来的?(每2盆花为一组)。7表示什么意思呢?(一共有这样的7组)。注意7的单位是“组”,而不是“盆”,余下的1盆指得是哪一盆?(是指接下来一组的第一盆,与每组的第一盆颜色相同)。
设计意图:此环节的教学,应给学生充分的时间去研究观察物体排列规律以及自主的探索解决此类实际问题的策略。每个学生都是有差异的个体,他们有自己解决问题的经验,对每一个问题都有自己的理解和处理方式。我在设计时尊重学生提出的每一种方法,并没有急于的进行优化策略。让学生在接下来的解决问题中发现问题,自己优化、选择合适的策略。
四、独立尝试,逐步优化解题方法。
1.出示 ……此处隐藏17445个字……p>2、下面我们一起探讨一种简便算法,就是直接用小数除以整数。教师:请同学们试着用竖式计算。计算完后,交流自己计算的方法。
3、理解小数除以整数的计算方法
指导学生列出竖式后,教师先把被除数小数点及后面的4盖住,问学生:22除以4会计算吗?算出来后接着问:余下的2表示什么?(表示2个一)
这时把盖住的部分揭开,并且把小数点后面的4写在2的后面,问学生:这个24又表示什么呢?(24个十分之一)。
师:现在用24个十分之一除以4,每份是多少呢?(每份是6个十分之一)。怎样在商上面表示6个十分之一呢?(在6的前面点上小数点)。
提问:用这种方法计算的结果和把22.4千米化成米计算的'结果相同吗?(相同),说明了什么?(说明这道题的结果是正确的)。
观察:我们今天所学的22.4÷4和我们复习题的整数除法224÷4相比,有哪些相同点和不同点?经过上面的探讨,你觉得应该怎样计算小数除法呢?按整数除法的方法计算。
商的小数点要和被除数的小数点对齐。
(5)小数点位置与被除数小数点的位置有什么关系?
引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,
也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要与被除数的小数点对齐”。
教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析.
教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算.
四、拓展知识外延
1、列竖式计算。
25.2÷6 34.5÷15
2、计算下列各题。
9.42÷6 94.2÷6 87.64÷7 876.4÷7反馈后教师问:如果计算出第一题的结果是1.57,你能估计出第二题的结果吗?已知第三题的结果是12.52,你能说出第四题的结果吗?为什么?
生:看被除数的小数点。师:看被除数的小数点想什么?
生:想商的小数点。
3、根据5823÷3=1941,口算下列各题。
58.23÷3=5.823÷3=582.3÷3=
五、课堂小结
(一)启发学生总结本堂课的知识。
(二)教师归纳总结。
六、作业布置
1、课堂作业:完成教材第24页的“做一做”。
2、课外作业:完成同步练习。
五年级上册数学教学设计14教学目标
1、结合具体情境,体会小数除法在日常生活中的应用,进一步体会除法的意义。
2、利用生活经验和已有知识,经历探索小数除以整数计算方法的过程,发展推理能力。
3、正确掌握小数除以整数的计算方法,并能利用这些方法去解决日常生活中的一些问题。
教学重点
正确掌握小数除以整数的'计算方法,并利用这些方法去解决日常生活中的问题。
教学难点
当被除数是小数时,如何试商,尤其是遇到还有余数和整数位数不够除时。
公开课教案
一、出示情境图:明确问题。
二、同学尝试解决,探索小数除法的计算方法。
1、同学先x尝试,再汇报交流,提出疑问。
交流方法:
1、估算:11.2<8×2
2、积的小数位数()×8=11.2一位小数
3、元转化为角,转化整数乘法。
习题:x商店8瓶牛奶11.2元,乙商店买四赠一,四瓶牛奶7.2元。问哪家商店卖的廉价?
x商店11.5元=112角11.2÷8=1.4(元)
乙商店7.2÷5=1.44(元)
答:所以x商店卖的廉价。
4、商不变的规律。
2、讨论:
问题1、小数点的位置怎么办?
问题2、除不尽怎么办?
3、总结:只要商的小数点与被除数的小数点对齐就行了。
三、巩固练习
第61页试一试:同学x计算,集体讲评,有问题和时解决。
五年级上册数学教学设计15◆教材分析
《组合图形的面积》是义务教育标准实验教材小学数学五年级上册第六单元的内容。这部分内容是在学生已经掌握了各种图形的面积计算的基础上进行教学的。
◆教学目标
1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积;
2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积;
3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。
◆教学重难点
【教学重点】应用知识解决生活中有关组合图形面积的问题。
【教学难点】怎样分割或者补足图形。
◆课前准备
xxx课件。
一、情景引入
1、复习
第一个图形是什么形?它的面积怎样计算?学生口答。
教师在长方形图的下面板书:S=ab。
第二个图形呢?
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。
可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
2、认识组合图形
让学生指出有哪些图形?
师:计算这些图形的'面积我们已经学会了,今天老师带来了几张图片(99页的四幅图),认一认,它们是什么?
这些图片分别是由哪几个平面图形组成的?
这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?
师:组合图形是由几个简单的图形组合而成的。
问:说一说,生活中哪些物体的表面可以看到组合图形?
同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。
二、探索新知
1、在实际生活中,有些图形也是由几个简单的图形组合而成的(出示题目及图)。
图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
◆教学过程
2、如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?
3、暴露资源,组织研讨:
方法一:三角形+正方形三角形面积=5×2÷2=5(m2)
正方形面积=5×5=25(cm2)房子侧面面积=25+5=30(cm2)
方法二:两个梯形
梯形面积=(5+2+5)×(5÷2)÷2=12×2.5÷2=30÷2=15(m2)房子侧面面积=15×2=30(cm2)
方法三:拼成一个长方形
长方形面积=(5+2+5)×(5÷2)=12×2.5=30(m2)房子侧面面积=长方形面积
方法四:从长方形中挖走两个小三角形